Rekomendasi Python Libraries untuk Machine Learning
25 Februari 2022
25 Februari 2022
Dalam ilmu komputer, terdapat berbagai macam algoritma untuk menjalankan sebuah machine learning. Membuat algoritma secara manual untuk satu machine learning tentu akan menghabiskan banyak waktu karena tidak efisien. Untungnya, saat ini sudah ada Python libraries yang bisa melakukan semua pekerjaan tersebut.
Python dengan libraries, modul, dan kerangkanya bisa digunakan untuk membantu kebutuhan machine learning. Hanya saja, Anda perlu menguasai pengaplikasian Python guna mendapatkan manfaatnya dalam machine learning dan data science. Berikut adalah sepuluh rekomendasi Python libraries yang bisa Anda gunakan.
Pandas adalah library Python yang paling dikenal dan banyak digunakan. Paket ini bisa digunakan untuk menganalisis data dengan cepat, realistis, dan serbaguna. Anda dapat memakainya untuk mengombinasikan, mengelompokkan, dan mengklasifikasikan data yang berasal dari berbagai sumber, seperti Excel, SQL databases, CSV, dan sebagainya. Oleh karena itu, Pandas menjadi salah satu paket Python yang wajib dimiliki lantaran performanya yang stabil dan bersifat open source.
Selanjutnya, ada NumPy atau Numerical Python. NumPy adalah aljabar linear yang dikembangkan dalam Python guna memecahkan berbagai permasalahan terkait numerik. Banyak ahli dan pengguna yang memilih paket ini karena NumPy memiliki kemampuan untuk memecahkan permasalahan-permasalahan rumit menyangkut operasional matematika. Selain itu, NumPy juga banyak digunakan untuk menangani berbagai permasalahan lain, seperti gambar, suara, dan operasional biner lainnya.
Matplotlib adalah salah satu Python libraries yang juga sering digunakan. Paket ini dipakai untuk kepentingan visualisasi data yang melibatkan grafik, plot, histogram, dan lain-lain. Visualisasi data diperlukan untuk memahami data secara lebih mendalam sebelum melakukan data-processing dan melatihnya dalam program machine learning. Matplotlib banyak digemari karena memiliki sifat yang open source dan gratis untuk diakses.
Seaborn adalah salah satu paket yang kerap digunakan dalam Python libraries. Paket ini dirancang di atas Matplotlib dan terintegrasi dengan struktur data dari Pandas. Sama halnya dengan Matplotlib, Seaborn digunakan untuk kepentingan visualisasi data agar data mudah dipahami. Dalam machine learning, Seaborn berfungsi membaca dan memahami data-data untuk kemudian dipetakan dalam bentuk grafis statistik, sehingga dapat menghasilkan plot yang informatif.
Berikutnya adalah SciPy sebagai Python libraries yang cukup dikenal. Paket ini terdiri dari beberapa modul untuk memperoleh hasil terbaik, meliputi statistik, integrasi, hingga aljabar linear. Kelebihan dari SciPy adalah operasionalnya yang mudah untuk mengatasi persoalan matematika. Selain itu, paket ini juga berguna untuk digunakan dalam image manipulation.
Python libraries berikutnya yang tidak kalah populer adalah Scikit-learn. Paket ini menjadi salah satu yang legendaris dalam dunia machine learning. Scikit-learn dibuat atas dua Python libraries, yakni NumPy dan SciPy. Dengan demikian, fungsinya tak jauh berbeda dengan kedua libraries pokoknya, yaitu untuk memecahkan berbagai permasalahan numerik. Namun, paket ini juga bisa digunakan untuk keperluan data mining dan analisis data.
Selanjutnya ada Python libraries yang dikembangkan oleh tim Google Brain dari Google, TensorFlow. Paket ini biasa digunakan untuk memecahkan permasalahan matematika dalam berbagai aplikasi artificial intelligence atau AI. Paket ini banyak digunakan oleh berbagai pengembang lantaran mampu menjalankan komputasi dengan melibatkan tensors. Selain itu, perangkat ini juga memungkinkan penerapan komputasi di berbagai perangkat, mulai dari komputer hingga smartphone.
Keras adalah salah satu Python libraries yang cukup populer. Sebab, paket ini memudahkan para pemula untuk pembuatan prototipe. Selain itu, proses prototyping juga bisa dikatakan jadi lebih cepat. Keras dibuat atas dasar TensorFlow, CNTK, dan Theano. Kelebihan lain dari paket ini adalah mampu digunakan untuk visualisasi data selain menyusun model, mengolah dataset, dan mengevaluasi hasil akhir.
Machine learning pada dasarnya berkutat pada persoalan matematika dan statistik. Begitu juga dengan Theano yang berfungsi untuk mendefinisikan, mengevaluasi, dan mengoptimalkan berbagai himpunan multidimensi dalam matematika. Paket ini biasanya digunakan untuk program komputasi berskala besar. Namun, tidak sedikit juga yang menggunakannya untuk proyek individu.
Terakhir ada PyTorch yang menjadi produk machine learning library dari tim Facebook. Paket ini dibuat untuk menyaingi keberadaan TensorFlow karena keduanya sama-sama menggunakan tensors. Akan tetapi, PyTorch didesain untuk lebih mudah dipahami dan dioperasikan. Meski demikian, paket ini hanya dapat digunakan untuk pengembangan dan pelatihan program deep learning.
Python libraries adalah komponen yang digunakan untuk mengimplementasikan sebuah machine learning. Dengan menguasai Python dan beberapa library di atas, Anda tidak perlu membuat algoritma machine learning dari awal. Sehingga, proses pengembangan dan optimalisasi machine learning akan lebih efisien.
Pelajari lebih lanjut mengenai Python, machine learning, dan data science di Algoritma Data Science School! Di sana, Anda bisa mengikuti berbagai program yang telah didesain khusus untuk individu dan korporat. Informasi lebih lengkap mengenai berbagai program yang ada di Algoritma Data Science School, klik di sini!
Referensi:
Dalam ilmu komputer, terdapat berbagai macam algoritma untuk menjalankan sebuah machine learning. Membuat algoritma secara manual untuk satu machine learning tentu akan menghabiskan banyak waktu karena tidak efisien. Untungnya, saat ini sudah ada Python libraries yang bisa melakukan semua pekerjaan tersebut.
Python dengan libraries, modul, dan kerangkanya bisa digunakan untuk membantu kebutuhan machine learning. Hanya saja, Anda perlu menguasai pengaplikasian Python guna mendapatkan manfaatnya dalam machine learning dan data science. Berikut adalah sepuluh rekomendasi Python libraries yang bisa Anda gunakan.
Pandas adalah library Python yang paling dikenal dan banyak digunakan. Paket ini bisa digunakan untuk menganalisis data dengan cepat, realistis, dan serbaguna. Anda dapat memakainya untuk mengombinasikan, mengelompokkan, dan mengklasifikasikan data yang berasal dari berbagai sumber, seperti Excel, SQL databases, CSV, dan sebagainya. Oleh karena itu, Pandas menjadi salah satu paket Python yang wajib dimiliki lantaran performanya yang stabil dan bersifat open source.
Selanjutnya, ada NumPy atau Numerical Python. NumPy adalah aljabar linear yang dikembangkan dalam Python guna memecahkan berbagai permasalahan terkait numerik. Banyak ahli dan pengguna yang memilih paket ini karena NumPy memiliki kemampuan untuk memecahkan permasalahan-permasalahan rumit menyangkut operasional matematika. Selain itu, NumPy juga banyak digunakan untuk menangani berbagai permasalahan lain, seperti gambar, suara, dan operasional biner lainnya.
Matplotlib adalah salah satu Python libraries yang juga sering digunakan. Paket ini dipakai untuk kepentingan visualisasi data yang melibatkan grafik, plot, histogram, dan lain-lain. Visualisasi data diperlukan untuk memahami data secara lebih mendalam sebelum melakukan data-processing dan melatihnya dalam program machine learning. Matplotlib banyak digemari karena memiliki sifat yang open source dan gratis untuk diakses.
Seaborn adalah salah satu paket yang kerap digunakan dalam Python libraries. Paket ini dirancang di atas Matplotlib dan terintegrasi dengan struktur data dari Pandas. Sama halnya dengan Matplotlib, Seaborn digunakan untuk kepentingan visualisasi data agar data mudah dipahami. Dalam machine learning, Seaborn berfungsi membaca dan memahami data-data untuk kemudian dipetakan dalam bentuk grafis statistik, sehingga dapat menghasilkan plot yang informatif.
Berikutnya adalah SciPy sebagai Python libraries yang cukup dikenal. Paket ini terdiri dari beberapa modul untuk memperoleh hasil terbaik, meliputi statistik, integrasi, hingga aljabar linear. Kelebihan dari SciPy adalah operasionalnya yang mudah untuk mengatasi persoalan matematika. Selain itu, paket ini juga berguna untuk digunakan dalam image manipulation.
Python libraries berikutnya yang tidak kalah populer adalah Scikit-learn. Paket ini menjadi salah satu yang legendaris dalam dunia machine learning. Scikit-learn dibuat atas dua Python libraries, yakni NumPy dan SciPy. Dengan demikian, fungsinya tak jauh berbeda dengan kedua libraries pokoknya, yaitu untuk memecahkan berbagai permasalahan numerik. Namun, paket ini juga bisa digunakan untuk keperluan data mining dan analisis data.
Selanjutnya ada Python libraries yang dikembangkan oleh tim Google Brain dari Google, TensorFlow. Paket ini biasa digunakan untuk memecahkan permasalahan matematika dalam berbagai aplikasi artificial intelligence atau AI. Paket ini banyak digunakan oleh berbagai pengembang lantaran mampu menjalankan komputasi dengan melibatkan tensors. Selain itu, perangkat ini juga memungkinkan penerapan komputasi di berbagai perangkat, mulai dari komputer hingga smartphone.
Keras adalah salah satu Python libraries yang cukup populer. Sebab, paket ini memudahkan para pemula untuk pembuatan prototipe. Selain itu, proses prototyping juga bisa dikatakan jadi lebih cepat. Keras dibuat atas dasar TensorFlow, CNTK, dan Theano. Kelebihan lain dari paket ini adalah mampu digunakan untuk visualisasi data selain menyusun model, mengolah dataset, dan mengevaluasi hasil akhir.
Machine learning pada dasarnya berkutat pada persoalan matematika dan statistik. Begitu juga dengan Theano yang berfungsi untuk mendefinisikan, mengevaluasi, dan mengoptimalkan berbagai himpunan multidimensi dalam matematika. Paket ini biasanya digunakan untuk program komputasi berskala besar. Namun, tidak sedikit juga yang menggunakannya untuk proyek individu.
Terakhir ada PyTorch yang menjadi produk machine learning library dari tim Facebook. Paket ini dibuat untuk menyaingi keberadaan TensorFlow karena keduanya sama-sama menggunakan tensors. Akan tetapi, PyTorch didesain untuk lebih mudah dipahami dan dioperasikan. Meski demikian, paket ini hanya dapat digunakan untuk pengembangan dan pelatihan program deep learning.
Python libraries adalah komponen yang digunakan untuk mengimplementasikan sebuah machine learning. Dengan menguasai Python dan beberapa library di atas, Anda tidak perlu membuat algoritma machine learning dari awal. Sehingga, proses pengembangan dan optimalisasi machine learning akan lebih efisien.
Pelajari lebih lanjut mengenai Python, machine learning, dan data science di Algoritma Data Science School! Di sana, Anda bisa mengikuti berbagai program yang telah didesain khusus untuk individu dan korporat. Informasi lebih lengkap mengenai berbagai program yang ada di Algoritma Data Science School, klik di sini!
Referensi: